Secure Spectrum Sensing in Cognitive Radio Networks

From CORES
Jump to: navigation, search
Secure.png

Reliable and swift spectrum sensing is a crucial technical challenge of cognitive radio (CR) that must be overcome before the widespread deployment of CR networks. In spectrum sensing, the incoming signal is received and processed, and then a decision on whether the sensed band can be accessed is made. If cooperative sensing is considered, the sensing results (either raw observation or hard decision) from each CR are reported and a global decision is made. Therefore sensing functionality exposes two kinds of secure vulnerabilities at the physical layer, which are categorized as sensing link attack and sensing cooperation attack. (1) Sensing link attack: In this attack, malicious attacker launches electromagnetic signals in the spectrum bands which CR is observing to affect the system sensing performance, e.g. primary user emulation attack (2) Sensing cooperation attack: When cooperation in spectrum sensing is involved, the malicious attacker could control or emulate as a CR and send false information and mislead the spectrum sensing results to cause collision or inefficient spectrum usage. The goal of this research is to investigate how to improve the security of spectrum sensing in physical layer.

We analyze the impact caused by different types of misbehaviors on sensing performance and develop a misbehaved CR detection algorithm by introducing a reputation-based mechanism.

Staff

Selected publications