Millimeter-Wave Massive MIMO Mobile Network: Physical Layer Perspective and Hardware Impairments

Millimeter-wave (mmW) wireless communication will be a key component in the future cellular networks (5G and beyond). The mmW system has unique characteristics as compared to conventional communication system. It features massive antenna array in both base station and user equipment, and communication channel has sparse scattering. Therefore, many physical layer procedures from current networks will dramatically change. Besides, a rethink in transceiver hardware architecture and impact from hardware impairments are necessary in system with an order of magnitude higher carrier frequency, processing bandwidth, and number of antenna elements. In this study, we have two goals:

1) We provide an understanding of how unique features in mmW communication (e.g., channel sparsity, large antenna array, etc.) affect system performance in physical layer procedures including initial access, transceiver synchronization, channel tracking, beamforming and multiplexing. All the above studies are closely aligned with modeling power consumption and hardware impairment in practical mmW transceivers.

2) We develop and analyze a novel DSP algorithm to improve performance of above physical layer procedures and save hardware power consumption and cost in mmW networks.


Selected publications