Towards Instantaneous Collision and Interference Detection using In-Band Full Duplex

Tom Vermeulen*, Mihir Laghate†, Ghaith Hattab†, Danijela Cabric†, and Sofie Pollin*

*Department of Electrical Engineering, KU Leuven, Heverlee B-3001 Belgium
†Department of Electrical Engineering, UCLA, Los Angeles CA 90024, USA
Outline

• In-band full duplex
• Problem formulation: Collision detection at transmitter
• Motivation: Energy and throughput gains
• Feasibility: Sensitivity requirements
• Evaluated detection techniques
• Experiment design and evaluation
• Conclusion
In-band full duplex

- Simultaneous transmit and receive
- Same time and frequency slot
In-band full duplex

• Simultaneous transmit and receive
• Same time and frequency slot

Problem: Self Interference (SI) saturates receiver

Solution: Self Interference cancellation in two forms...
 • Analog cancellation achieves 50 to 70 dB
 • Digital cancellation up to 30dB further
In-band full duplex

- Simultaneous transmit and receive
- Same time and frequency slot

Problem: Self Interference (SI) saturates receiver

Solution: Self Interference cancellation in two forms...
 - Analog cancellation achieves 50 to 70 dB
 - Digital cancellation up to 30dB further ... replaced by our collision detector
Problem formulation
Problem formulation
Problem formulation

\[Y_n = \begin{cases}
 h_{tt} X_n + W_n & H_0 \\
 h_{tt} X_n + h_{it} Z_n + W_n & H_1
\end{cases} \]
Problem formulation

\[Y_n = \begin{cases}
 h_{tt}X_n + W_n & \mathcal{H}_0 \\
 h_{tt}X_n + h_{it}Z_n + W_n & \mathcal{H}_1
\end{cases} \]

Challenge: Detect weak interferers in the presence of stronger self-interference
Motivation: Energy and Throughput Gains

- Half duplex Tx
- Interferer

Wasted Energy

- Collision detecting Tx
- Interferer

Time
Motivation: Energy and Throughput Gains

- Half duplex Tx
- Interferer

Wasted Energy

- Collision detecting Tx
- Interferer

Energy per bit [µJ/bit]

Throughput gain

Number of nodes

Number of nodes
Feasibility: Sensitivity Requirement

\[d_{ir} \]

\[\text{Tx} \quad d_{ir} \quad \text{Rx} \]
Feasibility: Sensitivity Requirement
Feasibility: Sensitivity Requirement

Detection at both Rx and Tx
Feasibility: Sensitivity Requirement

Detection at both Rx and Tx

Misdetection

d_{it}

D_{tr}

D_{ir}
Feasibility: Sensitivity Requirement

Detection at both Rx and Tx

False detection at Tx

Misdetection

d_{it}

Tx

d_{tr}

Rx

d_{ir}
Feasibility: Sensitivity Requirement

Detection at both Rx and Tx
Target > 95%

False detection at Tx

Misdetection

Constraint ≤ 5%
Feasibility: Sensitivity Requirement

Constraint $\leq 5\%$
False detection at Tx
Misdetection

Detection at both Rx and Tx
Target $> 95\%$

$\beta\delta \triangleq$ Detection sensitivity w.r.t self interference power
Feasibility: Sensitivity Requirement

Collision detection at Tx is feasible and useful for indoor environments

Detection at both Rx and Tx
Target > 95%

Constraint ≤ 5%
False detection at Tx
Misdetection

\[\beta \delta \triangleq \text{Detection sensitivity w.r.t self interference power} \]

\[d_{it} \]

\[d_{tr} \]

\[\text{Prob. of Detection (P_D)} \]

\[\text{Distance } d_{tr} [\text{m}] \]

\[\beta \delta = 50\text{dB} \quad \beta \delta = 60\text{dB} \quad \beta \delta = 70\text{dB} \quad \beta \delta = 80\text{dB} \quad \beta \delta = 90\text{dB} \]
Evaluated Detection Techniques

\[Y_n = \begin{cases}
 h_{tt}X_n + W_n & \mathcal{H}_0 \\
 h_{tt}X_n + h_{it}Z_n + W_n & \mathcal{H}_1
\end{cases} \]

Energy detection test statistic:
\[T_{ED} = \sum_{n=1}^{N} |Y_n|^2 \]

Two-sample Goodness-of-Fit Test Statistics:

- Kolmogorov-Smirnov:
 \[\hat{D}_{KS} = \max \{ d_+, d_- \} \]

- Kuiper:
 \[\hat{D}_{KP} = d_+ + d_- \]

- Anderson-Darling:
 \[\hat{D}_{AD} = \frac{1}{mn} \sum_{i=1}^{N-1} \frac{(M_i N - n_i)^2}{i(N - i)} \]

 - 2-norm difference between combined CDF and \(z_1 \)
 - Weight = \(i(N - i) \) \quad Weights tails

Estimated from \(Y_n \)

Learnt through training
Our measurement setup

- IEEE 802.15.4 signals
- TX power: 0dBm
- Noise floor: -90dBm
- EBD cancellation: 50-70dB

Node with collision detection:

- Receiver oversamples by 8
- Results averaged over 2000 measurements per interfering power
- Threshold trained for each test statistic such that $P_{FA} = 5\%$
Results

Target: $P_D > 95\%, P_{FA} < 5\%$
Results

Target: $P_D > 95\%$, $P_{FA} < 5\%$

2000 samples = 250 μs, i.e., 4 bytes in an 8 times oversampling 802.15.4 receiver
Results

Target: $P_D > 95\%, P_{FA} < 5\%$

Observation duration: 250 μs
Conclusions

- Collision detection at TX is practical for indoor environments
- Kuiper test + analog SI cancellation can detect interferers up to -75 dBm
- Almost instantaneous: only 250 μs
Thank you!
References
